Incompressible Boussinesq Equations

Jacob Glenn-Levin

Introductio

Backgroun

Sketch of proof

Incompressible Boussinesq Equations in Borderline Besov Spaces

Jacob Glenn-Levin

University of Texas at Austin

October 15th, 2011

The Boussinesq equations Basic definitions

Incompressible Boussinesq Equations

Jacob Glenn-Levin

Introduction

Backgroun

Sketch (proof In 2D, the incompressible Boussinesq equations are given by:

$$(B_{\kappa,0}) \begin{cases} \partial_t u + (u \cdot \nabla)u + \nabla P = \begin{pmatrix} 0 \\ \rho \end{pmatrix} \\ \partial_t \rho + (u \cdot \nabla)\rho = \kappa \Delta \rho \\ \operatorname{div} u = 0 \\ u(x,0) = u_0(x), \ \rho(x,0) = \rho_0(x). \end{cases}$$

• The scalar ρ , can be thought of as density or temperature.

For ρ ≡ 0, this system is the incompressible Euler equations.

The Boussinesq equations

Incompressible Boussinesq Equations

Jacob Glenn-Levin

Introduction

Background

Sketch of proof The main result is that for initial data (u_0, ρ_0) in a Besov-type space, B_{Γ} , there exists T > 0 and a unique solution to $(B_{\kappa,0})$ such that the vorticity, $\omega = \text{ curl } u$, and $\nabla \rho$ remain bounded in the related space B_{Γ_1} for $t \in [0, T]$.

- B_{Γ} is based on the Besov space $B_{\infty,1}^0$.
- $\Gamma(\xi)$ is a function which grows at infinity like $\log^{\beta}(\xi)$, $\beta \in (0, 1]$.
- Under stronger assumptions on Γ(ξ) global-in-time existence follows.

Background Littlewood-Paley decomposition

Incompressible Boussinesq Equations

Jacob Glenn-Levin

Introduction

Background

Sketch of proof The **Littlewood-Paley decomposition** is used to break a function into a sum of functions with localized frequencies:

$$f = \sum_{j \ge -1} \Delta_j f$$

where $\Delta_j f = \varphi_j * f$, and $\varphi_j = 2^{jn} \varphi(2^j \cdot)$ is a Schwartz-class function whose Fourier transform is supported near the annulus of radius 2^j (for $j \ge 0$) or within the unit ball (for j = -1).

Background Besov spaces

Incompressible Boussinesq Equations

Jacob Glenn-Levin

Introduction

Background

Sketch of proof Using the Littlewood-Paley decomposition, the Besov space $B_{p,q}^s$ is defined as the set of $f \in S'$ such that:

$$\left(\sum_{j\geq -1} 2^{jqs} \left\|\Delta_j f \right\|_p^q
ight)^{rac{1}{q}} < \infty$$

In this talk, we'll predominantly consider the Besov space $B^0_{\infty,1}$.

Background Br Spaces

Incompressible Boussinesq Equations

Jacob Glenn-Levin

Introduction

Background

Sketch of proof From the definition of $B^0_{\infty,1}$, we define the space B_{Γ} as the set of $f \in \mathcal{S}'$ such that

$$\sup_{N\geq -1} \left(\Gamma(N) \right)^{-1} \sum_{j=-1}^{N} \left\| \Delta_j f \right\|_{\infty} \leq C < \infty.$$

• $\Gamma : \mathbb{R} \to [0,\infty)$ grows like $\log^{\beta}(\xi)$ for $\beta \in (0,1]$.

• $\Gamma_1(\xi) = (\xi + 2)\Gamma(\xi)$, i.e. Γ_1 grows like $\xi \log^\beta \xi$.

Related Results R. Danchin and M. Paicu

Incompressible Boussinesq Equations

Jacob Glenn-Levin

Introduction

Background

Sketch of proof In 2009, R. Danchin and M. Paicu proved¹ a Yudovich-type result in \mathbb{R}^2 for $(B_{\kappa,0})$ under the assumption that $u_0 \in L^2$, $\omega_0 \in L^r \cap L^\infty$ $(r \geq 2)$ and $\rho_0 \in L^2 \cap B_{\infty,1}^{-1}$.

Motivating question: Can this result be extended to more general spaces than L^{∞} and $L^2 \cap B_{\infty,1}^{-1}$?

¹Raphaël Danchin and Marius Paicu, *Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data*, Comm. Math. Phys. **290** (2009), no. 1, 1–14

Related Results M. Vishik

Incompressible Boussinesq Equations

Jacob Glenn-Levin

Introduction

Background

Sketch of proof The B_{Γ} spaces were first introduced by M. Vishik in 1999², when he proved the existence and uniqueness of a solution to the Euler equations in B_{Γ_1} with initial vorticity $\omega_0 \in B_{\Gamma} \cap L^{p_0} \cap L^{p_1}$ for $1 < p_0 < 2 < p_1 < \infty$, and Γ a function which grows like \log^{β} for $\beta \in (0, 1]$.

Motivating question: Can Vishik's result be extended to the Boussinesq system $(B_{\kappa,0})$?

²Misha Vishik, *Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type*, Ann. Sci. École Norm. Sup. (4) **32** (1999), no. 6, 769–812

Main Result

Incompressible Boussinesq Equations

Jacob Glenn-Levin

Introduction

Background

Sketch of proof

Theorem (G-L)

For $1 < p_0 < 2 < p_1 < \infty$, let curl $u_0 = \omega_0 \in B_{\Gamma} \cap L^{p_0} \cap L^{p_1}$ and $\rho_0 \in W^{1,p_0} \cap W^{1,p_1}$ such that $\nabla \rho_0 \in B_{\Gamma}$. Assume that $(\xi + 2)\Gamma'(\xi) \leq C$ for a.e. $\xi \in [-1,\infty)$. Then there exists a T > 0 and a unique solution (u, ρ) to the system of equations $(B_{\kappa,0})$, such that

$$\begin{split} \omega(\cdot) \in \mathrm{L}^{\infty}([0,T];\mathrm{L}^{p_0} \cap \mathrm{L}^{p_1}) \cap \mathcal{C}_{w^*}([0,T];\mathcal{B}_{\Gamma_1}), \\ \nabla\rho(\cdot) \in \mathrm{L}^{\infty}([0,T];\mathrm{L}^{p_0} \cap \mathrm{L}^{p_1}) \cap \mathcal{C}_{w^*}([0,T];\mathcal{B}_{\Gamma}). \end{split}$$

Note that $u = \mathcal{K} * \omega$, where \mathcal{K} is the Biot-Savart kernel.

Sketch of proof B_{Γ} spaces

Incompressible Boussinesq Equations

Jacob Glenn-Levin

Introduction

Background

Sketch of proof One of the more useful properties of B_{Γ} spaces is their relation to B_{Γ_1} spaces via the flow map:

Theorem (Vishik, 1999)

For $t \in [0, T]$, let u be a solution to the Euler equations with initial data $f = \omega_0 \in B_{\Gamma} \cap L^{p_0} \cap L^{p_1}$. Let X_u be the associated flow map. Then X_u maps B_{Γ} to B_{Γ_1} , i.e. for any $t \in [0, T]$,

$$\left\|f\circ X_u^{-1}(t)\right\|_{\Gamma_1}\leq C\,\|f\|_{\Gamma}\,.$$

Sketch of proof Generalizations

Incompressible Boussinesq Equations

Jacob Glenn-Levin

Introduction

Background

Sketch of proof A closer inspection of this last theorem shows that:

- It can be extended to Euler-type systems such as the Boussinesq equations.
- The function *f* can be decoupled from the initial data.

Sketch of proof Boussinesq equations

Incompressible Boussinesq Equations

Jacob Glenn-Levin

Introduction

Background

Sketch of proof Taking the curl of the first equation in $(B_{\kappa,0})$ gives the vorticity equation:

$$\partial_t \omega + (\mathbf{u} \cdot \nabla) \omega = \partial_1 \rho.$$

Integration along flow lines then gives:

$$\begin{split} \|\omega(t)\|_{p} &\leq \|\omega_{0}\|_{p} + \int_{0}^{t} \|\nabla\rho\|_{p} \,\mathrm{d}\tau, \quad p \in [1,\infty) \\ \|\omega(t)\|_{\Gamma_{1}} &\leq \left\|\omega_{0}(X_{u}^{-1}(t;0))\right\|_{\Gamma_{1}} + \int_{0}^{t} \left\|\nabla\rho(X_{u}^{-1}(t;\tau),\tau)\right\|_{\Gamma_{1}} \,\mathrm{d}\tau \end{split}$$

To use the action of the flow map on B_{Γ} , we need to show that $\nabla \rho(t) \in B_{\Gamma}$ for $t \in [0, T]$.

A priori estimate

Incompressible Boussinesq Equations

Jacob Glenn-Levin

Introduction

Background

Sketch of proof

Theorem (G-L)

Assume u_0, ρ_0 are smooth. In addition, let $\omega_0 \in B_{\Gamma} \cap L^{p_0} \cap L^{p_1}$, and let $\rho_0 \in W^{1,p_0} \cap W^{1,p_1}$ such that $\nabla \rho_0 \in B_{\Gamma}$. Let (u, ρ) be the associated regular solution to $(B_{\kappa,0})$. Then there is a constant C > 0 such that

$$\int_0^t \left\|
abla
ho(au)
ight\|_{\mathrm{L}^{p_0} \cap B_\Gamma} \, d au \leq \mathcal{C}(t) < \infty$$

for any $t \in [0, T]$.

A priori estimate Sketch of proof

Incompressible Boussinesq Equations

Jacob Glenn-Levin

Introduction

Background

Sketch of proof To prove the a priori bound on density, we use a result of J.-Y. Chemin³ on the interaction of the heat kernel and Littlewood-Paley operators to prove that:

$$\int_0^t \|\rho(\tau)\|_{B^1_{\infty,1}} \,\mathrm{d}\tau \leq C\alpha \left(\|\rho_0\|_{B^{-1}_{\infty,1}} + \int_0^t \|(u\cdot\nabla)\rho\|_{B^{-1}_{\infty,1}} \,\mathrm{d}\tau \right),$$

where $\alpha = \left(\frac{1+\kappa t}{\kappa}\right)$.

$$\|\nabla\rho\|_{B_{\Gamma}} \leq C \, \|\rho\|_{B^1_{\infty,1}}$$

 Proof of a priori bound follows from paradifferential calculus, L^p estimates and Gronwall's inequality.

³Jean-Yves Chemin, *Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel*, J. Anal. Math. **77** (1999), 27–50

Uniqueness and existence Sketch of Proof

Incompressible Boussinesq Equations

Jacob Glenn-Levin

Introduction

Background

Sketch of proof For uniqueness and existence, apply the Δ_j operator to the first two equations in $(B_{\kappa,0})$ and use estimates on the commutator

$$\Delta_j(u\cdot\nabla f)-(S_{j-2}u\cdot\nabla)\Delta_j f,$$

for f equal to velocity and density in the respective equations.

- For uniqueness, use Osgood Uniqueness Theorem, properties of Γ(ξ) and Littlewood-Paley theory to show that uniqueness holds for t ∈ [0, T].
- For existence, standard approximation argument with Sobolev-regular solutions⁴ to $(B_{\kappa,0})$.

⁴Dongho Chae, *Global regularity for the 2D Boussinesq equations with partial viscosity terms*, Adv. Math. **203** (2006), no. 2, 497–513

Incompressible Boussinesq Equations

Jacob Glenn-Levin

Introduction

Background

Sketch of proof Thanks to the conference organizers and thank you for your time!

More information available at: http://www.ma.utexas.edu/users/jglennlevin